Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Semigroup action *
is an operator where \(s_2 * (s_1 * a) == (s_2 \diamond s_1) * a\) holds.
Synopsis
- class SemigroupAction s a where
- sact :: s -> a -> a
- sactTimes :: (Semigroup s, SemigroupAction s a) => Int -> s -> a -> a
Documentation
class SemigroupAction s a where #
Right semigroup aciton.
Instances
SemigroupAction IndexMap Int # |
|
SemigroupAction Permutation Int # |
|
Defined in Data.BinaryLifting sact :: Permutation -> Int -> Int # | |
Semigroup a => SemigroupAction a a # | |
Defined in Data.Core.SemigroupAction | |
SemigroupAction Permutation (Vector Int) # |
|
Defined in Data.BinaryLifting | |
SemigroupAction (Product Int) Int # | |
Unbox a => SemigroupAction (IndexMapWithAction a) Int # |
|
Defined in Data.BinaryLifting sact :: IndexMapWithAction a -> Int -> Int # | |
Num a => SemigroupAction (Affine2d a) a # | Limited to length 1 |
Defined in Data.Instances.Affine2d | |
Num a => SemigroupAction (Affine2d a) (V2 a) # | |
Num a => SemigroupAction (Mat2x2 a) (V2 a) # | |
(Num a, Unbox a) => SemigroupAction (Mat a) (Col a) # | |
KnownNat p => SemigroupAction (Product (ModInt p)) (ModInt p) # | |
(Unbox a, SemigroupAction a b) => SemigroupAction (IndexMapWithAction a) (Int, b) # |
|
Defined in Data.BinaryLifting sact :: IndexMapWithAction a -> (Int, b) -> (Int, b) # |